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  How Can Animal Models Inform on the Transition 
to Chronic Symptoms in Whiplash? 

     Beth A.   Winkelstein   ,   PhD     

  Study Design.   A nonsystematic review of the literature.  
  Objective.   The objective was to present general schema for 
mechanisms of whiplash pain and review the role of animal models 
in understanding the development of chronic pain from whiplash 
injury.  
  Summary of Background Data.   Extensive biomechanical and 
clinical studies of whiplash have been performed to understand the 
injury mechanisms and symptoms of whiplash injury. However, only 
recently have animal models of this painful disorder been developed 
based on other pain models in the literature.  
  Methods.   A nonsystematic review was performed and fi ndings 
were integrated to formulate a generalized picture of mechanisms 
by which chronic whiplash pain develops from mechanical tissue 
injuries.  
  Results.   The development of chronic pain from tissue injuries in 
the neck due to whiplash involves complex interactions between the 
injured tissue and spinal neuroimmune circuits. A variety of animal 
models are beginning to defi ne these mechanisms.  
 Conclusion.   Continued work is needed in developing appropriate 
animal models to investigate chronic pain from whiplash injuries 
and care must be taken to determine whether such models aim to 
model the injury event or the pain symptoms. 
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concepts of the neurophysiology of pain initiation from injury 
and longer-term signal processing and the central nervous 
system’s (CNS) neuroimmunologic involvement. A schema 
is presented highlighting the cellular and molecular processes 
for acute pain, as well as for the transition to a persistent pain 
state. Specifi c fi ndings in a variety of animal model systems 
are also summarized that inform on the pain mechanisms 
originating from tissues relevant to whiplash injury. Finally, 
potential considerations for animal modeling and interpreta-
tion of fi ndings for a human disease state are presented. 

  ANIMAL MODELING OF PAIN SYMPTOMS 
  In vivo  models of injury have provided the major platform 
to defi ne relationships between the time course and extent 
of activation of the nociceptive cascade and development 
and maintenance of pain symptoms. A broad range of ani-
mal models has been developed to study several pain states, 
including neuropathic, infl ammatory, peripherally mediated 
and centrally induced. Behavioral assessments enable pain 
measures in those models, covering different modalities, ana-
tomic regions and paradigms of testing ( Figure 1 ). Behavioral 
metrics are defi ned in the context of the applied stimulus 
and are described in terms related to the clinical symptoms. 
 Hyperalgesia  is an increased response to a stimulus which is 
normally painful, and includes all conditions of increased pain 
sensitivity.  1    Allodynia  is a particular case of hyperalgesia in 
which a stimulus that is usually not painful becomes noxious, 
refl ecting that the stimulus and responses differ.  1   Both of these 
responses are gauges of hypersensitivity in both humans and 
animals, and so, serve as important and useful quantitative 
outcomes for modeling of pain symptoms.  2   Various animal 
models of pain have been developed to mimic the symptoms 
and the syndromes of acute and chronic pain with an equally 
broad range of inciting pathologies. Indeed, that body of 
work is quite extensive and is beyond the scope of this review; 
several other reviews cover this topic in more detail.  2   –   4     

  PAIN MECHANISMS—DETERMINING THE 
TRANSITION FROM ACUTE TO 
CHRONIC STATES 
 An inciting event that stimulates nerve fi bers initiates local 
responses and can lead to central signaling events that include 
neuronal and immune responses ( Figure 2 ). In acute or noci-
ceptive pain, these cascades resolve; however, when chronic 
pain develops, CNS modifi cations lead to hypersensitivity 
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 This review describes the current understanding of how 
chronic pain develops, with a focus on whiplash-related 
pathomechanisms. Background on pain modeling is 

introduced with relevance to symptoms and sensitivity. Several 
working hypotheses describing mechanisms of pain symp-
tom development and maintenance are presented, including 
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and central sensitization in which the spinal neural circuits 
respond with a heightened response to stimuli.  2   ,   5   The CNS 
also mounts a widespread and sustained neuroimmune 
response further contributing to neuronal plasticity and pain 
maintenance ( Figure 2 ).  

 Acute pain results from noxious stimuli that activate 
small-diameter unmyelinated C-fi bers or thinly myelinated 
A δ  sensory neurons in the periphery.  6   Many different neu-
rotransmitters communicate from the peripheral afferents to 
spinal cord neurons. Nociceptive pain protects against tissue 
injury and continues  only  in the presence of sustained nox-
ious stimuli.  5   After a tissue injury, local nociceptors become 
sensitized and exhibit both lower thresholds for fi ring and 
increased fi ring rates when exposed to a previously nonnox-
ious stimulus.  5   ,   7   ,   8   This peripheral sensitization is due largely 
to the production and peripheral release of neurotransmitters 
and/or other factors from neurons and nonneuronal cells that 
can infi ltrate the injured area ( Figure 2 ).  7   ,   9   Multiple media-
tors, including bradykinin, amines, prostanoids, NGF, and 
protons, act rapidly via receptors on nociceptor terminals to 
sensitize these neurons.  9   This generalized nociceptive pain 
response encompasses the typical cascade of an acutely pain-
ful episode, where the balance of injury, repair and healing is 
achieved and the collection of electrophysiological and chem-
ical events resolves. However, for persistent pain the local, 
spinal, and supraspinal cascades become pathologically and 
permanently altered.  7   

 The contribution of the local and widespread infl amma-
tory response plays a large role in the transition from acute to 
chronic pain. Persistent pain is due, in large part, to the initia-
tion and maintenance of spinal sensitization via plasticity in 
the neuronal circuits. Although the exact mechanism by which 
the spinal cord transitions to a hyperexcitable state remains 

somewhat unknown, many hypotheses have emerged. These 
theories are highlighted briefl y here; more extensive discus-
sions can be found elsewhere.  5   ,   9   –   11   Simultaneously, different 
processes occur that induce this central sensitization. The 
low-threshold A β  afferents, which normally do not transmit 
nociceptive signals, are recruited to transmit spontaneous 
and movement-induced pain.  10   The central hyperexcitability 
is further exacerbated by a “wind-up” response of repetitive 
C-fi ber stimulation, expanding receptive fi elds, and spinal 
neurons taking on properties of wide dynamic range neu-
rons.  12   ,   13   Ultimately, A β -fi bers stimulate the postsynaptic neu-
rons, whereas these A β -fi bers previously transmitted only to 
nonpainful innocuous stimuli. Amplifi cation of noxious sig-
nals from afferents at the synapse in the spinal cord can occur 
and this long-term potentiation can exacerbate pain.  11   

 Although the neuronal responses in the nervous system 
contribute to the onset of pain, neuroimmune responses 
throughout the nervous system also potentiate persistent 
pain ( Figure 2 ).  14   –   17   Tissue injury leads to the release of many 
chemical mediators that enhance neuronal activity and also 
initiate a neuroimmune cascade in which many peripheral 
nonneuronal cells are activated ( Figure 2 ).  7   ,   14   ,   15   These resident 
cells, including mast and Schwann cells, release mediators 
such as histamine, prostaglandins, cytokines and chemokines, 
that recruit other infi ltrating immune cells ( Figure 2 ). The 
cytokine cascade is responsible for the infi ltration of immune 
cells to the site of injury.  8   ,   14   ,   15   Proinfl ammatory cytokines trig-
ger the release of other infl ammatory mediators that sensi-
tizes nociceptors and further maintains neuronal excitability 
and sensitization, which leads to pain  8   ,   14   ( Figure 2 ). However, 
some cytokines, such as TNF- α  and IL-1 β , can also directly 
sensitize nociceptors during infl ammation because sensory 
neurons express their receptors.  8   ,   18   

  Figure 1.    Maps of the regions of referred pain 
in the human and evoked-pain in the rat enable 
comparisons between these two species and 
interpretation of common behavioral tests of 
sensitivity in the rodent in the context of clinical 
symptoms in the human. Top left: the distribution 
of spontaneous whiplash pain in human patients, 
modifi ed from Lord  et al .  97   Top right: distributions 
of evoked-pain regions are also observed in the 
rat indicating the similar “coathanger” distribu-
tion. Bottom right: dermatomes indicating spinal 
nerve innervations of the forepaw of the rat.  

C6/C7

C6/C7

C2/C3

C4/C5

C3/C4

C5/C6

BRS204744.indd   S219BRS204744.indd   S219 08/11/11   10:55 AM08/11/11   10:55 AM



S220 www.spinejournal.com December 2011

BIOLOGICAL FEATURES Animal Models of Whiplash Pain • Winkelstein

Copyright © 2011 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

 Neurotrophins and growth factors (NGF, in particular) are 
important mediators and modulators of pain.  19   –   22   Although 
neurotrophic factors are necessary for the long-term sur-
vival of neurons, there is emerging evidence for their roles as 
crucial mediators of persistent pain. NGF is upregulated in 
many chronic pain conditions and modulates pain through 
BDNF, which is released from the spinal terminals of a subset 
of nociceptors.  21   ,   23   BDNF acts through the trkB receptor and 
leads to central sensitization by potentiating glutamate neu-
rotransmission in the dorsal horn and promoting the synap-
tic rearrangement of the A β -fi bers.  14   ,   21   ,   24   Neurotrophins also 
have indirect actions on neurotransmission because they are 
synthesized and released by several types of immune cells,  14   
which themselves interface with neurons and can modulate 
synaptic activity. 

 Activation of peripheral nociceptors also activates glial 
cells in the CNS. Microglia are the resident macrophages in 

the CNS and astrocytes help with maintaining homeostasis at 
neuronal synapses. Both types of glial cells respond to injury 
by changing their morphology, proliferating, and releasing 
infl ammatory mediators.  17   ,   25   –   27   Spinal microglia are acti-
vated early after peripheral injury by some neuromodulators, 
including excitatory amino acids, substance P and others  27   ,   28  ; 
when activated they release several proinfl ammatory cyto-
kines (IL-1 β , TNF- α , IL-6), as well as nitric oxide, prostaglan-
dins and NGF.  16   ,   25   ,   29   In addition, BDNF released from stimu-
lated microglia modulate neuronal signaling in the superfi cial 
dorsal horn.  30   These mediators, in turn, induce the exagger-
ated release of neurotransmitters from presynaptic neurons, 
sensitize the postsynaptic membrane, activate neighboring 
astrocytes and enhance microglial activity.  16   ,   25   This positive 
feedback sustains the continued further release of pain media-
tors, facilitating the development of neuronal hypersensitivity 
and leading to persistent pain.  

  Figure 2.    Trauma in the periphery induces the release of chemical mediators that can activate local nociceptors, lead to spinal sensitization, and 
produce pain. Nociceptor activation leads to neurotransmitter and neurotrophin synthesis in the DRG. In addition, local infl ammation involves 
the recruitment and stimulation of many nonneuronal cells to release infl ammatory mediators that modulate neuronal excitability. Both of these 
neuronal and immune responses can induce central sensitization in the spinal cord that increases the excitability of neurons in the dorsal horn. 
Spinal glial cells are activated and release infl ammatory mediators that further potentiate the neuronal and glial responses, contributing to 
persistent pain.  
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Those afferent modifi cations are complemented by increased 
spinal activity of the glutamatergic system and neuronal 
hyperexcitability that are sustained in association with per-
sistent pain.  47   ,   57   In contrast, spinal substance P is detected to 
decrease early and may be a consequence of increased protein 
usage in the spinal cord and/or injury-induced axonal dys-
function that can affect protein transport.  52   Substance P can 
regulate the spinal glial responses  28   which has an important 
impact on pain because spinal glia are critical in the onset and 
maintenance of  chronic  pain  17   ,   25   –   27   and are associated with 
persistent sensitivity in that same model.  49   ,   59   Cytokines are 
also modulated in both the DRG and spinal cord after loading 
of the facet joint.  50   Cytokine expression parallels spinal glial 
activation and both of these responses increase after painful 
subfailure capsule loading; however, neither may specifi cally 
drive  chronic  pain because joint loading that produces greater 
injury does not independently produce more behavioral 
sensitivity.  50   ,   59   This apparent disconnect between the cen-
tral immune response and facet joint loading indicates there 
may be other cellular processes that maintain facet-mediated 
persistent pain.   

  RELEVANCE TO WHIPLASH—CONSIDERATIONS 
FOR ANIMAL MODELING 
 There is growing physiologic evidence that various structures 
in the neck may generate pain and models have been devel-
oped for their injury.  2   ,   18   Although the exact pain mechanisms 
for whiplash remain open to debate, there is consensus on 
the potential sites of injury and how pain can originate from 
them. Recent research for cervical spine pain has focused par-
ticularly on understanding mechanisms of acute and chronic 
whiplash injury. These fi ndings are discussed with regard to 
injury biomechanics and the nociceptive mechanisms related 
to pain generation and maintenance. 

  The Facet Joint 
 Many of the hypotheses of facet-mediated whiplash pain 
imply that “abnormal” motion patterns develop in the spine, 
that induce local injury or dysfunction to the specifi c anatomi-
cal components of the facet joint. During these injuries, the 
lower cervical spine undergoes extension whereas the upper 
spine fl exes, modifying the local biomechanical environment 
of the facet joint by inducing: (1) compression of the facet 
joint, and/or (2) excessive capsular ligament strain.  31   –   35   

 The potential for tissue loading and pain generation is 
primarily relevant to the ligamentous capsule that encloses 
the facet joint.  18   ,   35,36   Many engineering studies demonstrate 
the facet capsule to be stretched more during whiplash than 
in normal physiologic motions.  37   –   43   However, frank rupture 
of the cervical facet capsule has not been reported for any 
whiplash kinematic.  38   ,   39   ,   44   Even transient tensile loading of the 
cervical facet capsule can activate both short and long-lasting 
pain pathways.  45   –   48   For example, short-duration capsule load-
ing activates and saturates mechanoreceptive and nociceptive 
afferents,  45   suggesting an immediate mechanism to initiate 
pain. Interestingly, in a rat model of a single exposure of the 
facet joint to tension loading that results in similar distor-
tions in the capsule that saturate nerve afferents also produces 
persistent sensitivity.  47   ,   49   –   53   The capsular biomechanics associ-
ated with those responses are very similar to those reported 
for the human capsule during whiplash simulations.  34   ,   38   ,   39   ,   54   
Using animal model systems, it has been further determined 
that those same transient painful joint loading scenarios are 
also associated with the production of collagen fi ber disorga-
nization,  55   ,   56   and axonal swelling and altered morphology,  48   
which provide a potential means to initiate pain maintenance. 

 Transient facet capsule loading that produces persistent 
pain also leads to a complicated cellular cascade in the affected 
afferents in the dorsal root ganglia (DRG) and spinal cord. 
Both neurons and accessory cells in the DRG and spinal cord 
exhibit modifi ed phenotypic responses to painful joint load-
ing ( Figures 2  and  3 ).  47   ,   53   ,   57   In particular, painful facet cap-
sule tension increases expression of a marker of the activated 
stress response in DRG neurons to attempt to reestablish pro-
tein homeostasis that can be altered by neuronal damage.  53   ,   58   
Gene transcription of substance P in afferents is also induced  52   
suggesting that painful loading may induce axonal dysfunc-
tion that subsequently disrupts normal protein production. 
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 Figure 3.    (A) Representative extracellular voltage recordings and 
neuronal fi ring rate of spinal neurons during repeated stimulation of 
the forepaw with a 26 g fi lament after a painful facet capsule injury 
(distraction) or sham. (B) Evoked spinal neuronal fi ring is signifi cantly 
(*) elevated after painful injury. (C) Neuronal fi ring upon noxious paw 
stimulation is strongly correlated with the magnitude of stimulus to 
elicit paw withdrawal (a lower threshold is more sensitivity).  
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and induce the release of IL-1 and TNF- α .  67   By blocking the 
TNF- α  pathway using a soluble TNF receptor at the time of 
injury, behavioral sensitivity is reduced after injury along with 
decreases in both TNF- α  and IL-1 β  mRNA.  29   ,   80   ,   81   Axonal 
degeneration and infl ammation can also increase electrical 
activity in adjacent intact axons,  72   ,   82   leading to spinal sensiti-
zation and the immune sequelae that further exacerbate sen-
sitization ( Figure 2 ). Spinal glial cells become activated and 
modulate other immunologic changes leading to persistent 
pain, via cytokine and growth factor production.  15   ,   80   ,   83   ,   84   Spi-
nal glial activation is also sensitive to the severity of loading 
and the presence of chemical irritation in radicular pain,  74   ,   76   ,   85   
with greater degrees of nerve root compression inciting 
greater activation of spinal astrocytes.  71   ,   74   The differentiation 
in activation is apparent early and is sustained in parallel with 
persistent pain symptoms,  76   suggesting that astrocytes may 
directly respond to the changes in the dorsal horn that are 
induced by damaged primary afferents.  86   ,   87   Spinal microglial 
activation is also induced and seems to be directly related to 
the  onset  of pain.  76   However, spinal microglial proliferation 
induced early after cervical nerve root compression may only 
indicate tissue trauma and not be because of nociceptive sig-
naling and pain.  88     

  LESSONS FROM ANIMAL MODELS OF PAIN 
AND IMPLICATIONS 
 Given the extreme complexity of the mechanisms of neck inju-
ries that  do and do not result in chronic pain , it must be rec-
ognized that there are a variety of factors that have important 
roles. For example, many biomechanical factors have been 
shown to alter neuronal function: rate, loading duration, and 
load magnitude, among others.   47,51,52,57,59,64,74,75,89,90    The factors, 
which confound the injuries themselves, and the physiologic 
milieu at the time of injury can also potentially directly modu-
late the severity and extent of pain.   70,76,81,85,88,91    For example, 
it can be hypothesized that injury after an already preexisting 
minor tissue injury may produce a more severe nociceptive 
response than in the absence of any preexisting damage. It is 
not unlikely that an initial injury produces the local infl amma-
tory changes discussed earlier, which in turn may lower that 
tissue’s threshold for mechanical injury that can lead to symp-
toms ( Figure 2 ). In fact, the mechanical insult required to pro-
duce behavioral hypersensitivity in the presence of an infl am-
matory insult is less than that required in its absence, despite 
producing the same degree of behavioral sensitivity,   70,76,81,85,88    
corroborating clinical studies in which patients with preex-
isting spinal degeneration experience more severe and longer 
lasting neck pain symptoms.  92   ,   93   It is possible that degenera-
tion can contribute to infl ammatory changes in the facet joint 
that increase its susceptibility to whiplash injury so when its 
tissues undergo loading that may not normally be painful, the 
nerve fi bers may be presensitized and have lower thresholds for 
response than those previously required to initiate nociception 
or that may induce a more widespread central response and 
chronic pain. Nonetheless, an integrated approach is required 
to fully understand the complicated disease of chronic pain, 
especially in the context of whiplash injury. 

  The Nerve Root and DRG 
 The potential for nerve root and DRG trauma exists because 
of the fl exibility of the cervical spine, coupled with the neck’s 
potential to undergo loading due to motions of the head and 
torso. The cervical nerve roots can be at particular risk for 
injury due to increased hydrostatic pressure that can be estab-
lished during rapid head and neck motions.  60   –   63   Although 
there is growing research in these areas, most of the current 
understanding of chronic pain developing from nerve root 
injury is from a large body of work in the lumbar spine. 
However, a unique porcine model was developed to study the 
potential mechanisms of whiplash-induced pain.  60   ,   61   

 Aldman’s group hypothesized that pressure gradients in 
the CNS from blood fl ow resistance can be generated during 
rapid spinal motions such as whiplash.  60   ,   61   The spinal vascula-
ture regulates blood volume to accommodate any changes in 
spinal canal size. Yet, during rapid head/neck motions, resis-
tance to blood fl ow can generate pressure gradients in and 
outside the spinal canal.  60   –   63   These gradients can directly apply 
pressure to the nerve roots and spinal ganglia that can induce 
cellular injury.  61   ,   63   Coupling these hypothesized pressure-wave 
effects with the direct mechanical compression and tethered 
stretching of the neural tissues that can occur by abnormal 
rapid spinal motions, several painful injury mechanisms 
emerge.  60   ,   62   In fact, plasma membrane breakdown of spinal 
ganglia cells has been induced in an  in vivo  porcine model of 
rapid head-neck extension.  60   –   63   Although it suggested a poten-
tial mode of injury to neuron cell bodies, that work did not 
provide any direct measure of pain. 

 Emerging research in persistent radiculopathic pain has 
highlighted the infl uence of injury on the neurophysiologic 
responses that lead to the establishment of chronic pain. The 
injury profi le at the time of nerve root injury modulates neuro-
peptide expression in the DRG and the spinal cord, associated 
with development of persistent pain.  64   –   66   Cervical root com-
pression that produces persistent sensitivity shows greater allo-
dynia at later time points after more severe dorsal root com-
pression.  64   ,   66   There is a corresponding depletion of substance P 
in the DRG that also depends on the injury severity, suggesting 
its synaptic release and utilization may be increased in per-
sistently painful injuries.  67   ,   68   Spinal expression of CGRP also 
decreases signifi cantly with increasing nerve root loading and 
pain.  64   ,   66   Further, both the extent of axonal damage and Wal-
lerian degeneration in the compressed nerve root are directly 
related to the likelihood of developing persistent allodynia.  66   ,   68   

 Much of what is understood about the development of 
persistently painful radiculopathy comes from models of lum-
bar radicular pain.  69   –   73   It is clear from studies of lumbar and 
cervical nerve root compression that direct nerve root trauma 
(even transient) can induce long-lasting pain and a constel-
lation of physiologic responses throughout the nervous sys-
tem.  64   ,   65   ,   68   ,   69   ,   74   –   76   The onset of behavioral hypersensitivity is 
immediate after trauma and parallels a host of widespread 
neuronal and neuroinfl ammatory responses, including endo-
neurial edema, axonal membrane leakage and Wallerian 
degeneration.  73   ,   77   –   79   In response to axonal damage, macro-
phages infi ltrate the injury site, phagocytose myelin debris, 
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 Although animal models are integral and necessary to 
defi ne mechanisms of painful injury and those factors that 
drive the transition to chronic pain, there are several impor-
tant caveats about using such platforms, in particular to 
understand a mechanically based injury such as whiplash. 
Anatomic geometry and scaling are paramount among these 
considerations. For example, most animal models of pain 
have been developed in quadrupeds that do not have the same 
mechanical demands, anatomic relationships and locomotion 
demands as the bipedal human. This must not be ignored 
particularly for spine-based pathologies in which the tissue 
loading can be substantially different among species. How-
ever, the neurologic function, tissue responses and relation-
ships between them have been well documented for a number 
of species. Nonetheless, care must be taken when developing 
such models and interpreting results. 

 It is also important to consider whether an animal model 
is serving as a proxy to model the pathology/injury or the 
symptoms that develop. Within that context it is also impor-
tant to note that the current animal models of whiplash pain 
measure only evoked pain and do not capture the spontane-
ous pain that is reported clinically. In this sense, animal mod-
els could be enhanced by the development of assessments for 
behavioral outcomes that measure the pain in the referred 
pain areas observed clinically. Certainly, the behavioral and 
physiological evidence that is already available strongly sug-
gests spontaneous pain may be induced in these models, but 
additional work is needed to develop relevant and sensitive 
assays to detect it. In fact, animal models of whiplash injury 
and chronic pain offer great promise because they represent a 
“reduced” model system in which many of the confounding 
factors that are present in the clinical problem—such as 
litigation status, compensation issues and psychosocial 
factors—can be controlled or avoided altogether. Conversely, 
the complexity of the clinical presentation, which includes a 
variety of physical function and stress responses,  94   also is not 
fully captured in the laboratory model. 

 The complexity of the clinical syndrome of chronic whip-
lash pain is further extended by the recent reports that genet-
ics play a key role in pain persistence, accounting for many 
discrepancies observed for seemingly similar injuries.  95   The 
utility of animal models is both highlighted and hampered 
by this. Although the clinical picture of persistent pain in 
humans is indeed intricate, similar genetic specifi city has 
been defi ned for different strains of rats exhibited different 
responses to a standardized painful tissue injury.  96   More-
over, such diversity could be exploited in a rat model to 
determine if and which genetic variants may be more predic-
tive of chronic pain from whiplash. Such studies are needed 
and would undoubtedly provide additional valuable insight 
into the clinical management of this syndrome. Indeed, it 
may be possible to induce behavioral outcomes that model 
the clinical picture but it is imperative to consider then the 
pathology, tissue origin and pathways being mapped—the 
question to consider becomes “is it a model of the injury or 
the symptoms?”  
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